Observing Grain Boundaries in CVD-Grown Monolayer Transition Metal Dichalcogenides

Thuc Hue Ly,†,‡ Ming-Hui Chiu,§ Ming-Yang Li,† Jiong Zhao,‡ David J. Perello,‡ Magdalena Ola Cichocka,†,‡ Hye Min Oh,†,‡ Sang Hoon Chae,†,‡ Hye Yun Jeong,†,‡ Fei Yao,† Lain-Jong Li,§ and Young Hee Lee *,†,‡

†IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon 440-746, Korea, ‡Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea, §Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia, and ^Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

ABSTRACT Two-dimensional monolayer transition metal dichalcogenides (TMdCs), driven by graphene science, revisit optical and electronic properties, which are markedly different from bulk characteristics. These properties are easily modified due to accessibility of all the atoms viable to ambient gases, and therefore, there is no guarantee that impurities and defects such as vacancies, grain boundaries, and wrinkles behave as those of ideal bulk. On the other hand, this could be advantageous in engineering such defects. Here, we report a method of observing grain boundary distribution of monolayer TMdCs by a selective oxidation. This was implemented by exposing directly the TMdC layer grown on sapphire without transfer to ultraviolet light irradiation under moisture-rich conditions. The generated oxygen and hydroxyl radicals selectively functionalized defective grain boundaries in TMdCs to provoke morphological changes at the boundary, where the grain boundary distribution was observed by atomic force microscopy and scanning electron microscopy. This paves the way toward the investigation of transport properties engineered by defects and grain boundaries.

KEYWORDS: transition metal dichalcogenides · sapphire grain boundary · selective oxidation · atomic force microscopy · scanning electron microscopy · TEM · STEM

Grain boundaries in two-dimensional layered structure have attracted considerable attention from basic science and technology point of view.1–5 Observing and engineering grain boundaries have been the key issues in controlling the grain sizes, their electronic properties, and the related device performances.5–9 Grain boundaries and defects in graphene have been extensively studied not only at atomic scale using transmission electron microscopy and scanning tunneling microscopy,1,10 but also at macro-scale with optical microscopy.4,11,12 Unlike grain boundaries in graphene, less is known for grain boundaries in transition metal dichalcogenides (TMdCs).3,5,13–16 The observation of grain boundaries of MoS2 by second harmonic generation is a noninvasive and all optical way.16,17 Yet, this method is not easily accessible, and thus, a simple and low cost approach to observe large-scale grain distribution is required if possible. Observation of grain boundaries in large-area monolayer TMdCs, for example, prepared by chemical vapor deposition (CVD), can provide a way of engineering the quality of grown TMdCs.

Our aim is to visualize grain boundaries (GBs) in large-area CVD-grown TMdCs. This approach is based on the oxidation of TMdC monolayer by UV irradiation at room temperature. O and OH radicals are generated by UV irradiation under moisture-rich conditions,5,18 which subsequently oxidize defective grain boundaries. The width of GBs is narrow but can be widened by controlling UV oxidation conditions, in which such morphological modifications at the boundary can be observed by atomic force microscopy and scanning electron microscopy. This approach is not limited to metal or oxide substrate. This is well contrasted with previous reports on graphene grain boundaries where the oxidized metal below grain boundaries of graphene was observed.4,11 The method is unique and...
RESULTS AND DISCUSSION

To obtain information on grain boundary distribution in monolayer TMdC, large-area TMdC monolayer is convenient. Large-area monolayer WSe$_2$ ($2 \times 1 \text{ cm}^2$) was synthesized on sapphire by CVD, using WO$_3$ powder and Se powder as the precursors19 (see Methods for details). The sample was used directly without transfer to minimize unwanted effects involved during transfer process. Large-area monolayer WSe$_2$ on sapphire substrate was loaded into a UV chamber at a humidity level of 65%. UV light irradiation generates O and OH radicals,4 which can be easily bonded on the defects near the GBs and point defects.4 A schematic for UV oxidation is shown in Figure 1a. In general, the width of GBs is expected to be as narrow as a nanometer and is not easily observed even with atomic force microscopy (AFM) and scanning electron microscopy (SEM) in a few micrometer sizes (Figure 1b,c). The brighter spots in AFM and darker spots in SEM are multilayer portions which were generated during CVD growth.19 Monolayer WSe$_2$ on sapphire was uniformly synthesized without explicit voids in large area of $2 \times 1 \text{ cm}^2$. No distinctive grain boundary lines were observed from a series of AFM and SEM images due to the limited resolution. The characteristics of large area monolayer WSe$_2$ has been described elsewhere.19

After the sample was irradiated by UV light for 6 min at room temperature under moisture-rich conditions, the grain boundary lines were visible as the bright lines in the morphological image of AFM (Figure 1d). The similar dark lines were also observed in SEM image at the identical position to AFM (Figure 1e). Since WSe$_2$ on sapphire substrate (Al$_2$O$_3$) was directly used, neither artifacts in bare sapphire substrate nor such morphological patterns were created to influence morphology (Supporting Information Figure S1). The morphological change in the AFM image was ascribed to the oxidation at the grain boundary of WSe$_2$ layer. This is well contrasted with UV oxidation of grain boundary in graphene where the underlying copper was oxidized to reveal morphological changes in optical microscopy.4 Grain boundaries in WSe$_2$ layer might be defective and can be easily oxidized to reveal such morphological modifications under oxidation.

To understand how the GB lines are generated on WSe$_2$ layer, we prepared samples with different UV irradiation times. The humidity level was maintained at 65%. Lower humidity was not sufficient to generate GB lines. At low humidity level (less than 40%), GBs were observed at longer humidity time (10 min) (Supporting Information Figure S2), which is in good contrast with that at 65% that partial oxidation occurred (Figure 2a). Pure ozone treatment involved etching only but no GB lines were generated. The presence of moisture was very necessary to produce OH radicals under UV irradiation.$^{20-23}$ These radicals played an important role for being attached on GBs to oxidize WSe$_2$. At high humidity level (60–65%), observations of GBs in (10 × 10 μm^2 WSe$_2$) relied on the UV treatment time clearly (Figure 2). White spots, regarded as oxidized point defects and impurities such as vacancies, higher

![Figure 1. Schematic of the ultraviolet irradiation process. (a) Schematic diagram for UV treatment monolayer WSe$_2$. (b and c) AFM and SEM image of pristine WSe$_2$. (d and e) AFM and SEM image of oxidized WSe$_2$ after 6 min UV treatment.](image-url)
order vacancies, and/or excessive seleniums, were scattered on the entire surface of WSe₂ layer and some GB lines partially appeared under 4 min UV oxidation (Figure 2a). The inset revealed a depth profile (not a height) of \(~1\) nm with a width of \(~70\) nm. Higher resolution image (Supporting Information Figure S3a, d) clearly demonstrated that GB lines are composed of oxidized parts with a height profile (white spots) and dark parts with a depth profile (trench parts). This strongly implies that some portion of grain boundaries oxidized in earlier stage was etched away to give a depth of \(~1\) nm, similar to the thickness of monolayer WSe₂. Such an observed etching process on WSe₂ by UV oxidation is attributed to weak bonds in WSe₂, which is different from graphene that showed no such etching phenomena under similar conditions.4 Further oxidation for 6 min led to accumulate functional groups to have thick boundary lines. Line profile which runs across the GBs showed a height of \(~6.7\) nm and the line width was expanded to \(~130\) nm (inset of 6 min UV). Optical micrograph also showed similar patterns in this case (Supporting Information Figure S4). Slightly different heights were observed from other positions (Supporting Information Figure S3e), indicating that nature of defects at the GB of WSe₂ layer is in fact complicated. The height of GBs was reduced to \(~3.3\) nm at 8 min UV oxidation, again a partial etching behavior, as evidenced by the empty area near the middle of the image (circle), while the width did not change much. The GB lines were nearly saturated here with similar patterns to those of 6 min UV oxidation. At 10 min UV oxidation, some portions (upper right corner) were completely etched away. AFM observations indicate that 6 min UV oxidation is the best for observing grain boundaries in WSe₂ layer.

Similar phenomena were observed by SEM (Figure 2b) and optical microscopy (Supporting Information Figure S4). For example, at 2 min UV oxidation time, a few lines were developed with some etch pits (see also Supporting Information Figure S5). The rich white speckles appeared in AFM image were not visible in the same size of SEM image. Although some lines appeared at 6 min UV oxidation, more distinct grain boundary lines were observed at 8 min UV oxidation. Narrow grain boundary lines developed at 6 min oxidation time shown in AFM image were rarely visible in SEM image. WSe₂ layer was severely etched away at 10 min UV oxidation, similar to AFM observations. Images were not clear enough from optical microscopy due to relatively narrowly oxidized region (Supporting Information Figure S5), although similar trends to AFM and SEM observations were observed. Information for the average number of grains and average grain sizes by counting the number from different positions of the samples was extracted (Supporting Information Figure S4). The average number of grains increased with oxidation time and saturated at 8 min oxidation time, while the average grain sizes decreased with oxidation time (Figure 2c). We conclude that our UV oxidation approach can visualize intrinsic grain boundary distribution of monolayer WSe₂ at an optimum condition of 6 min UV oxidation under 65% humidity, not intentionally generated by creating defects on WSe₂ plane.

In addition to the morphological modification observed in AFM and SEM images, we also performed spectroscopic analysis using Raman spectroscopy and photoluminescence (PL) (Figure 3). The two characteristic peaks from Raman spectra for monolayer WSe₂ at 248.7 cm⁻¹, assigned to E₂g mode, and 260 cm⁻¹,
assigned to A_{1g} mode, were observed. After UV oxidation for 6 min, Raman and PL single spectra are taken from the darker positions for mapping image that are related to GB regions. The E_{1g}^{2} peak was slightly upshifted to 249.3 cm^{-1} with significantly reduced intensity, and the intensity of A_{1g} was also reduced after oxidation. The A exciton peak in PL spectra (excited by a 532 nm laser) of monolayer WSe$_2$ near $\sim 756 \text{ nm}$ revealed a significant intensity reduction after oxidation. B exciton was not observed in our case perhaps due to low laser power. One can notice that the line shape of PL spectra after oxidation is different from that of the pristine sample. To distinguish the peaks of PL spectrum, the curve was deconvoluted into two peaks by using mixed Lorentzian and Gauss curves, as shown in Figure 3b. The peak near 752 nm was blueshifted to 743 nm by oxidation, ascribed to the p-type doping effect due to oxidation. Another peak near 762 nm was not shifted appreciably, which comes from nonoxidized portion. Confocal Raman mapping with an integration of E_{1g}^{2} peak ($240-254 \text{ cm}^{-1}$) is shown in Figure 3c. The GB lines and white spots (presumably multilayer portion) were observed in AFM (Supporting Information Figure S7a), in which some thick dashed lines are marked for guidance. Because of the large spot size of the laser (\sim500 nm), grain boundary lines that are located closely to each other, were not distinguishable neither in confocal Raman nor confocal PL intensity mapping. Oxidation of the WSe$_2$ layer was further confirmed by X-ray photoelectron spectroscopy (XPS) of two samples (Supporting Information Figure S8).

Grain boundaries are presumably formed by simply stitching small flakes during growth. In such a case, the grain orientations in general differ from each other. To confirm what we observed as grain boundaries in WSe$_2$ layer is indeed the true grain boundaries, not artificially constructed defect lines, it is required to identify the different grain orientations separated by such observed lines. For this purpose, we performed TEM observations. After transfer of the monolayer WSe$_2$ on TEM grid, large-area WSe$_2$ layer seemed to be fragmented (Figure 4a). A similar phenomenon was also observed by optical microscopy when the sample was transferred to SiO$_2$/Si substrate (Supporting Information Figure S9). The grain boundaries could be mechanically weak so that they could be ruptured during transfer process which often involves severe mechanical strain. The dark field image and the corresponding selective-area electron diffraction (SAED) pattern were obtained from the red circle region marked in Figure 4a which shares three regions in the corner.
Three different colors were shown in the dark field image separated by the crack (region 1). Three different hexagonal spots with different intensities were visible in the SAED pattern. A series of SAED patterns marked by different small circles (1, 2, 3) clearly demonstrated different crystal orientations (Figure 4b). More examples of such orientation distribution from different regions were provided (Supporting Information Figures S10 and S11). Note that the grain size here is an order of a few micrometers, which is similar to those obtained from AFM image. Therefore, we conclude that the grain boundaries we observed by AFM are true grain boundaries separated by grains with different orientations. Monolayer WSe2 layer is mechanically weak. In addition to the ruptured grain boundaries, the cracks were often visible within the grain that maintained the same crystal orientation (Supporting Information Figure S12), in good agreement with previous prediction.2,3

Grain boundaries are presumably formed during CVD growth. Nucleation of WSe2 could be initiated randomly from impurities or defects on substrate. As the size of WSe2 grows, they could merge and form grain boundaries. Size of grains depends on the number of nucleation seeds and CVD growth conditions. In addition to forming grain boundaries, points defect could be generated easily. There has been no report on such point defects on CVD-grown WSe2 monolayer. The high-resolution TEM image was provided in Supporting Information Figure S13a. The middle part of Figure 13a and its high-resolution TEM (Supporting Information Figure S13b) revealed highly crystalline WSe2 layer. The contaminant shown in Supporting Information Figure S13a at the edge area contained amorphous carbon coming from the residual PMMA and carbon TEM grid. Annular dark-field image—scanning transmission electron microscope (ADF-STEM) was also shown to see clearer image with high crystallinity in atomic scale (Supporting Information Figure S13c). The magnified TEM image for the area squared by green solid line in Supporting Information Figure S13c revealed the hexagonal lattice structure of WSe2 (Supporting Information Figure S13d). The identified W and Se atoms provided their relative positions ($d_{W-\text{Se}} = 2.58 \text{ Å}$, $d_{W-W} = 3.25 \text{ Å}$), in good agreement with theoretical prediction of monolayer 2H-WSe2 phase.30 It is intriguing to see in other area that selenium vacancy (blue square and Supporting Information Figure S13f) and higher order defects exist (Supporting Information Figure S13e). The defect population became richer as the beam scan time persisted (Supporting Information Figure S14). Although low electron energy of 80 keV was used for STEM, the sample could be damaged to generate point defects due to weak mechanical strength of WSe2 monolayer.31–33 With longer scanning time, Se-vacancies were generated more but no W vacancies were observed.

Oxidation of the WSe2 layer was further confirmed by energy-dispersive X-ray (EDX) quantitative analysis (Supporting Information Figure S15). The net increase of oxygen content after 6 min UV treatment was only $\sim 1.49\%$ because the region of the oxidized WSe2 was very narrow, located at the WSe2 grain boundaries, in agreement with XPS observations in Supporting Information Figure S8. The ratio of W/Se was increased from 0.43 (before UV) to 1.01 (after UV treatment) due to the reduced Se content, indicating Se etching during
UV oxidation. The electron energy loss spectrum (EELS) of WSe2 before and after UV treatment was also observed (Supporting Information Figure S16). The O K edge was detected only after UV treatment, in which such oxygen atoms formed amorphous WO3, again indicating that the WSe2 layer was oxidized after UV treatment.

The electrical measurement was carried out to provide useful information on oxidation of WSe2 layer. A back-gated WSe2 FET was fabricated on 300 nm SiO2/Si substrate via standard electron beam lithography (see Methods for details). Transfer characteristics of devices were measured in μTorr vacuum for the sample after annealing, the UV-treated sample for 5 min, and the reannealed sample after UV treatment (Figure 5). Initial state of the sample after vacuum annealing showed p-FET behavior with low I_{on} of \sim10 nA, resulting from negative threshold voltage (Figure 5a). After UV treatment, I_{on} was observed to increase 10-fold and the threshold voltage was slightly upshifted, consistent with a hole (p-) doping effect of oxygen generated under UV treatment. With reannealing of the UV-treated sample, the on-current was nearly recovered to its original value. The similar behavior was shown in another set of device (Figure 5b). On the other hand, Figure 5c,d shows another type of IV characteristics. With UV treatment, I_{on} increased similar to the previous cases. However, after reannealing, I_{on} was further reduced below the initial value and moreover, the threshold voltage was further shifted to negative value. We observed these two patterns of IV characteristics from other sets of devices. Simple physisorbed oxygen-related functional groups play a role in shifting the on-current and the threshold voltage in the former case. Strong chemisorbed functional groups can be involved during UV process in the latter case, which modify further the TMD surface with reannealing. This requires further study.

The same argument can be applied to other TMDC materials. To generalize our approach, MoS2 monolayer was tested further (Supporting Information Figure S17). Two MoS2 flakes were merged together. After the similar oxidation process, the grain boundary line was observed in the merged region from AFM morphology, although additional oxidized line defects were visible. We note that oxidation occurred more easily in MoS2 than WSe2 such that extra oxidation occurred even within the grain from high resolution AFM image. Clear grain boundary distribution was observed exclusively from large-area MoS2 monolayer in SEM image. The formation of line defects requires further study.

CONCLUSIONS

In conclusion, we demonstrated an easy method for observing grain boundaries and defects of large-area CVD-grown tungsten diselenide. This technique was realized by generating oxygen and hydroxyl radicals using UV irradiation under moisture-rich conditions and selectively functionalizing defective grain boundaries in WSe2 to provoke morphological changes at the boundary. We observed both etching and oxidation occurred simultaneously at the grain boundary, which is more complicated than graphene. The atomic structure of WSe2 and Se vacancy observation were reported for the first time to our knowledge.
METHODS

Growth of WSe₂ Film. The WO₃ powders (0.3 g) were put in a quartz boat and placed in the heating zone center of the furnace. The Se powders were prepared in a separate quartz boat at the upper stream side of the furnace. The sapphire substrates for growing WSe₂ were put at the downstream side, next to WO₃ powders quartz boat. The gas flow was brought by an Ar/H₂ flowing gas (Ar = 90 sccm, H₂ = 9 sccm), and the chamber pressure was controlled at 4 Torr. The center heating zone was heated to 925 °C at a ramping rate 28 °C/min, and the temperature of Se boat was maintained at 290 °C by heating tape during the reaction. Note that the temperature of the sapphire substrates was at about 850 °C when the center heating zone reaches 925 °C. After reaching 925 °C, the heating zone was kept for 15 min for reaction and the furnace was then naturally cooled down to room temperature.

Growth of MoS₂. The MoO₃ powder (0.3 g) was placed in a ceramic boat located in the heating zone center of the furnace. The S powders were placed in a separate ceramic boat at the upper stream side maintained at 150 °C during the reaction. The sapphire substrate for growing MoS₂ was located at the downstream side, where the S and MoO₃ vapors were brought to the targeting sapphire substrate by an Ar carrier gas (70 sccm, chamber pressure = 40 Torr). The center heating zone was heated to 635 °C with a ramping rate 15 °C/min. After reaching 635 °C, the heating zone was kept for 30 min and the furnace was then naturally cooled down to room temperature.

Ultraviolet Oxidation of TMDCs on Sapphire. TMDCs grown on sapphire were placed into a chamber equipped with a low-pressure H₂ flowing gas (Ar = 90 sccm, H₂ = 9 sccm), with the majority of emitted light at a wavelength of 254 nm and approximately 10% of emitted light at a wavelength of 185 nm. Humidity was introduced into chamber by connecting it to a humidifier. The humidity level in the chamber was monitored using a hydro-thermometer (accuracy of ±3%), where the chamber was continuously ventilated to maintain a constant pressure. After reaching the required humidity level, the humidifier was disconnected from the chamber. The TMDCs on sapphire was then irradiated under UV light for different times (2, 4, 6, 8, and 10 min). Radicals are generated under UV and humidity conditions as follows:

\[O_2 \rightarrow O \]
\[O_2 + H_2O \rightarrow O_2 + H_2O_2 \]
\[2O_2 + H_2O_2 \rightarrow 2OH^+ + 3O_2 \]
\[H_2O \rightarrow H^+ + OH^- \]

Device Fabrication. WSe₂ monolayer in a millimeter scale was transferred onto Si substrate with 300 nm SiO₂ using a wet etching method (will be described in TEM sample preparation below). Source/drain contacts were fabricated using e-beam lithography followed by metal evaporation of Ti/Au (7/30 nm) and lift-off process. The transport measurements were then performed with voltage probes (Keithley 4200) using a probe station with 0.75 MΩ DC resistance.

Characterization. The morphology of WSe₂ on sapphire was observed by optical microscopy (100× magnification, LEICA, DP70, Japan), atomic force microscopy (SPM 400, SEIKO, Japan) in tapping mode. 2D confocal Raman mapping and PL mapping were also performed using NT-MDT, NTEGRA Spectra PNL (see Supporting Information, Experimental Methods for more details.). The crystal structure of WSe₂ on sapphire was analyzed with transmission electron microscope (TEM, JEM ARM 200F) and probe aberration-corrected scanning transmission electron microscope (STEM, JEM ARM 200F) operated at 80 kV under STEM mode.

REFERENCES AND NOTES

